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a reaction which involves loss of the carbocyclic ring, is less 
clear.13 However, some indication that interceptible, highly 
unsaturated (or THF-solvated) metal species are involved is 
provided by the following experiment. Slow addition of 8 to 
a mixture of Na-Hg in THF containing 1.2 M (C6Hs)3P 
gave a solution which contained only small amounts of 9 
and 10, but much larger quantities of NaCo-
(CO)2(P(C6H5)3)2 (13)14 and NaCo(CO)3(P(C6Hs)3) 
(14).15 Control experiments showed that (a) 9 is inert to 
substitution16 by P(C6Hs)3 under these reaction conditions; 
(b) 7?5-C5H5Co(CO)((C6H5)3P) is formed only slowly from 
8 and (C6Hs)3P at these temperatures, and in any case 
gives neither 13 nor 14 when reduced with Na-Hg in THF 
in the presence of excess phosphine.17,18 
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Crystal and Molecular Structure, Spectroscopic 
Properties, and Redox Behavior of [j^-CsHsCoCOk*-, a 
"Mixed-Valence" Organometallic Radical Anion Having 
a High Degree of Intramolecular Derealization and 
Cobalt in Formal Oxidation State +0.5 

Sir: 

We wish to report the structure, ESR and electronic 
spectra, and redox behavior of the paramagnetic title com­
pound (I- -) . This material can be considered a formal co-
balt(l)-cobalt(0) "mixed-valence" transition metal com­
plex1 having a high degree of interaction or derealization 
between the two intramolecular metal atoms; each cobalt is 
in formal oxidation state +0.5. It is one of the very few ex­
amples of a complex having cobalt-cobalt multiple bond 
character (in this case a bond order of ca. 1.5), and it is eas­
ily oxidized to a neutral complex which presumably has a 
complete cobalt-cobalt double bond. 

The bis(triphenylphosphine)iminium salt of radical anion 
h~, prepared by Na-Hg reduction of TJ5-CSHSCO(CO)2 as 
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described in the accompanying communication,2 crystal­
lizes in the triclinic system with the following crystal data: 
a = 11.279 (3), b = 17.593 (5), c = 10.428 (1) A; a = 
101.59 (3), 0 = 93.52 (6), y = 91.69 (2)°; space group Pl; 
Z = 2. The density, 1.37 (2) g cm -3 at 23°, measured by 
flotation in aqueous KBr, corresponds to pCaicd = 1.385 g 
cm -3. Single-crystal x-ray diffraction data were collected 
on a Datex-automated General Electric diffractometer 
using monochromatic Mo Ka radiation at room tempera­
ture; the structure was determined using 2871 reflections 
with intensities / > 3<x(/), and phased by both heavy atom 
techniques and direct methods (MULTAN). A three-dimen­
sional electron density map revealed the locations of all 55 
nonhydrogen atoms in the asymmetric unit. Refinement 
was carried out using group parameters for the phenyl rings 
of the PPN+ cation (rigid body approximation); positions of 
the 40 hydrogen atoms were calculated and were not re­
fined. Anisotropic full-matrix least-squares refinement 
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Figure 1. ORTEP drawing of the molecular structure of [»;5-
C5H5CoCO]2- - , determined by x-ray diffraction on the bis(triphenyl-
phosphine)iminium salt. Bond lengths are given in angstrom units. 

Figure 2. ESR spectrum of [?;5-C5H5CoCO]2-"PPN+. 

(phenyl groups refined isotropically) of F converged to a 
final R = 0.073. 

An ORTEP drawing of the final structure of the radical 
anion is shown in Figure 1. A complete list of bond dis­
tances and angles follows this article in the microfilm edi­
tion of the journal; however, the most important structural 
characteristics are: (a) the cobalt-cobalt bond lies on a 
crystallographic center of inversion and is perpendicular to 
the planes of the two C5H5 rings; (b) the cobalt atoms and 
bridging carbonyl groups are essentially coplanar, unlike 
those of dicobalt octacarbonyl,3 in which the dihedral angle 
between the two Co-Co bridging carbonyl planes is 127°; 
(c) the cobalt-cobalt bond distance is 2.36 A. Comparison 
of the Co-Co distance in l-~ with the single bond length in3 

Co2(CO)g (2.52 A), the double bond in4 7j5-cyclopentadien-
yliron nitrosyl dimer (2.33 A), and the triple bond in5 (TJ5-
CsMes^C^CO^ (2.28 A) is consistent with a judgment 
made on the basis of the 18-electron rule6 that the bond 
order in l-~ is ca. 1.5. That is, it should be thought of as the 
delocalized "radical anion" of the corresponding neutral 

1000 800 
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Figure 3. Electronic absorption spectrum of [ T ^ - C S H S C O C O I J - ' P P N 4 

(and presumably doubly bonded) (TJ5-CSH5)2CO2(CO)2 (1). 
This picture is supported by the ESR spectrum of I- -. As 
shown in Figure 2, in THF solution at 25°, a symmetrical 
15-line spectrum is observed, centered at roughly 3100 G 
with «o = 50 G. This indicates that (at least on the ESR 
time scale) the unpaired electron is shared equally by both 
cobalt atoms (/ = %) (the hyperfine splitting due to the hy­
drogens is apparently too small to be observed under our 
conditions). The ESR spectra of the sodium and PPN+ salts 
of 1 are completely identical. 

The conception of I- - as the radical anion of 1 also 
suggests that it should be easily converted to 1 by oxidation. 
This inference was confirmed both chemically and electro-
chemically. Addition of a number of oxidizing agents (e.g., 
O2, chloranil, FeCh) to a THF solution of I- - at room tem­
perature converted the complex immediately to a mixture of 
(j75-C5Hs)Co(CO)2 and a material having a single ir band 
at 1790 cm-1. Removal of the mononuclear dicarbonyl by 
vacuum transfer, followed by sublimation of the residue, 
gave pure 1 as a dark green solid. This material has proper­
ties identical with those recently described by Lee and 
Brintzinger,7 who reported its formation during low-tem­
perature irradiation of (^-CsH5)Co(CO)2 and Na-Hg re­
duction of (?;5-C5H5)Co(CO)l2. Rapid-scan cyclic voltam-
metry (acetonitrile solution) confirmed the reversibility of 
the 1 — l-~ reaction; l-~ is oxidized reversibly at a poten­
tial of -1.05 V vs. the Ag| AgClO4 electrode.8 

Consideration of I- - as a mixed-valence complex1 

suggests that it may be important in the study of potentially 
conducting organometallic materials. Many such species 
show electronic transitions in the near-infrared;lc'9 I- -, too, 
exhibits a near-ir absorption. Both the sodium and PPN+ 

salts of l-~ exhibit near-ir bands at 1190 nm (e =* 50), in 
addition to absorptions in the uv including one at 375 nm (e 
sa 5000). The low near-ir extinction coefficient is perhaps 
due to the high degree of mixing between the +1 and 0 va­
lence states. In crystals of [1-"PPN+], the cations prevent 
close approach of the counteranions, making this salt a poor 
candidate for conductivity. However, other derivatives of 
l»-(e.g., I- - TTF+)10 may be more promising; attempts to 
prepare such materials are in progress. 
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Cooperative Catalysis of the Cleavage of an Amide by 
Carboxylate and Phenolic Groups in a 
Carboxypeptidase A Model 

Sir: 

The enzyme carboxypeptidase A catalyzes the hydrolysis 
of /V-acylamino acids and also of the related esters, O-
acylhydroxy acids, at comparable rates.1 For both classes of 
substrates catalytic functions are apparently performed by 
a Zn 2 + and a 7 carboxylate of glutamate 270. In addition, 
tyrosine 248 has often been assigned a catalytic role, at 
least with peptide substrates. It is agreed that the phenolic 
hydroxyl of Tyr-248 can be within a catalytically useful dis­
tance of a bound substrate, and x-ray structure work2 shows 
that it can be hydrogen bonded to the leaving group nitro­
gen in a peptide substrate. However, various modification 
studies3 suggest that Tyr-248 plays no role in the hydrolysis 
of esters, and according to some interpretations4 may not 
even be involved in the peptidase activity of the enzyme. 

As part of our general program of exploring the chemis­

try of carboxypeptidase A and various model systems for its 
action,5 we have investigated the question of whether the 
hydrolysis of an amide, catalyzed by a neighboring carbox­
ylate ion, can also be assisted by a phenolic hydroxyl in an 
appropriate position to protonate the leaving amino group. 
We find that such bifunctional catalysis is indeed signifi­
cant, but only under special conditions related to those 
within the enzyme itself. Perhaps more striking, we find 
that our reactions undergo a change of mechanism on ap­
proach to physiological pH conditions which is directly re­
lated to the principal ambiguity in the mechanism of action 
of carboxypeptidase A. 

The compounds of interest, 1-5, were all prepared by re­
action of 2 equiv of the appropriate benzylamine with 2,3-
dimethylmaleic anhydride in ether-dimethoxyethane at 
room temperature for 12 h. Depending on the reaction con­
ditions (vide infra) these compounds underwent cleavage of 
the amide group to afford either dimethylmaleic anhydride 
or dimethylmaleic acid. In all cases the kinetics were fol­
lowed at 250 nm for at least two-three half-lives, and they 
obeyed a good first-order rate law. In the important pH re­
gion corresponding to neutrality, there was no catalysis by 
buffer, and the identity of the reaction product was con­
firmed by isolation. 

CH3 CH3 W 
RNH,+"0,C CO 

I 
NHR 

1,R = PhCH2-

-or 
OH 

OH 

In aqueous solution, all these compounds showed essen­
tially the same behavior as has been described by Kirby6 for 
simple 7V-alkyldimethylmaleamic acids. That is, the free 
carboxylic acid underwent rapid cyclization to produce the 
dimethylmaleic anhydride, while the corresponding carbox­
ylate ion showed a negligible rate of reaction. Thus, in all 
aqueous pH ranges compounds 1-5 had similar rates and 
gave no evidence for catalysis by the phenolic hydroxyl. The 
situation was different in a nonaqueous medium. 

The interior of many enzymes is at least partially non­
aqueous in character, and catalytic hydrogen bonding ef­
fects do not have to compete with hydrogen bonds involving 
water. Thus, we have also examined the amide cleavage re­
actions of compounds 1-5 in CH3CN containing 1 M H2O 
as a model for such a medium. The data are listed in Table 
I. Of course, the definition of "pH" in such a medium is a 
problem,7 so our systems were examined simply in terms of 
the buffer ratio of HOAc/KOAc. With a 10:1 ratio of 
HOAc/KOAc, corresponding to an acidic medium, all the 
compounds underwent a cyclization to produce dimethyl-
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